29 research outputs found

    The Inner Galaxy resolved at IJK using DENIS data

    Full text link
    We present the analysis of three colour optical/near-infrared images, in IJK, taken for the DENIS project. The region considered covers 17.4 square deg and lies within |l|<5 deg, |b|<1.5 deg. The adopted methods for deriving photometry and astrometry in these crowded images, together with an analysis of the deficiencies nevertheless remaining, are presented. The numbers of objects extracted in I,J and K are 748000, 851000 and 659000 respectively, to magnitude limits of 17,15 and 13. 80% completeness levels typically fall at magnitudes 16, 13 and 10 respectively, fainter by about 2 magnitudes than the usual DENIS limits due to the crowded nature of these fields. A simple model to describe the disk contribution to the number counts is constructed, and parameters for the dust layer derived. We find that a formal fit of parameters for the dust plane, from these data in limited directions, gives a scalelength and scaleheight of 3.4+-1.0 kpc and 40+-5 pc respectively, and a solar position 14.0+-2.5 pc below the plane. This latter value is likely to be affected by localised dust asymmetries. We convolve a detailed model of the systematic and random errors in the photometry with a simple model of the Galactic disk and dust distribution, to simulate expected colour-magnitude diagrams. These are in good agreement with the observed diagrams, allowing us to isolate those stars from the inner disk and bulge. After correcting for local dust-induced asymmetries, we find evidence for longitude-dependent asymmetries in the distant J and K sources, consistent with the general predictions of some Galactic bar models. We consider complementary L-band observations in a second paper.Comment: 14 pages, 33 figures, LaTeX, MNRAS accepte

    V.2 CoRoT heritage in future missions

    Get PDF
    This book is dedicated to all the people interested in the CoRoT mission and the beautiful data that were delivered during its six year duration. Either amateurs, professional, young or senior researchers, they will find treasures not only at the time of this publication but also in the future twenty or thirty years. It presents the data in their final version, explains how they have been obtained, how to handle them, describes the tools necessary to understand them, and where to find them. It also highlights the most striking first results obtained up to now. CoRoT has opened several unexpected directions of research and certainly new ones still to be discovered

    First DENIS I-band extragalactic catalog

    Get PDF
    This paper presents the first I-band photometric catalog of the brightest galaxies extracted from the Deep Near Infrared Survey of the Southern Sky (DENIS) An automatic galaxy recognition program has been developed to build this provisional catalog. The method is based on a discriminating analysis. The most discriminant parameter to separate galaxies from stars is proved to be the peak intensity of an object divided by its array. Its efficiency is better than 99%. The nominal accuracy for galaxy coordinates calculated with the Guide Star Catalog is about 6 arcseconds. The cross-identification with galaxies available in the Lyon-Meudon Extragalactic DAtabase (LEDA) allows a calibraton of the I-band photometry with the sample of Mathewson et Al. Thus, the catalog contains total I-band magnitude, isophotal diameter, axis ratio, position angle and a rough estimate of the morphological type code for 20260 galaxies. The internal completeness of this catalog reaches magnitude Ilim=14.5I_{lim}=14.5, with a photometric accuracy of ∌0.18m\sim 0.18m. 25% of the Southern sky has been processed in this study. This quick look analysis allows us to start a radio and spectrographic follow-up long before the end of the survey.Comment: 13 pages, 17 figures, to appear A&A Supl.

    SPHERE: the exoplanet imager for the Very Large Telescope

    Get PDF
    Observations of circumstellar environments to look for the direct signal of exoplanets and the scattered light from disks has significant instrumental implications. In the past 15 years, major developments in adaptive optics, coronagraphy, optical manufacturing, wavefront sensing and data processing, together with a consistent global system analysis have enabled a new generation of high-contrast imagers and spectrographs on large ground-based telescopes with much better performance. One of the most productive is the Spectro-Polarimetic High contrast imager for Exoplanets REsearch (SPHERE) designed and built for the ESO Very Large Telescope (VLT) in Chile. SPHERE includes an extreme adaptive optics system, a highly stable common path interface, several types of coronagraphs and three science instruments. Two of them, the Integral Field Spectrograph (IFS) and the Infra-Red Dual-band Imager and Spectrograph (IRDIS), are designed to efficiently cover the near-infrared (NIR) range in a single observation for efficient young planet search. The third one, ZIMPOL, is designed for visible (VIR) polarimetric observation to look for the reflected light of exoplanets and the light scattered by debris disks. This suite of three science instruments enables to study circumstellar environments at unprecedented angular resolution both in the visible and the near-infrared. In this work, we present the complete instrument and its on-sky performance after 4 years of operations at the VLT.Comment: Final version accepted for publication in A&

    ISOGAL: A deep survey of the obscured inner Milky Way with ISO at 7 and 15 micron and with DENIS in the near-infrared

    Get PDF
    The ISOGAL project is an infrared survey of specific regions sampling the Galactic Plane selected to provide information on Galactic structure,stellar populations,stellar mass-loss and the recent star formation history of the inner disk and Bulge of the Galaxy. ISOGAL combines 7 and 15 micron ISOCAM observations - with a resolution of 6'' at worst - with DENIS IJKs data to determine the nature of the sources and theinterstellar extinction. We have observed about 16 square degrees with a sensitivity approaching 10-20mJy, detecting ~10^5 sources,mostly AGB stars,red giants and young stars. The main features of the ISOGAL survey and the observations are summarized in this paper,together with a brief discussion of data processing and quality. The primary ISOGAL products are described briefly (a full description is given in Schuller et al. 2003, astro-ph/0304309): viz. the images and theISOGAL-DENIS five-wavelength point source catalogue. The main scientific results already derived or in progress are summarized. These include astrometrically calibrated 7 and 15um images,determining structures of resolved sources; identification and properties of interstellar dark clouds; quantification of the infrared extinction law and source dereddening; analysis of red giant and (especially) AGB stellar populations in the central Bulge,determining luminosity,presence of circumstellar dust and mass--loss rate,and source classification,supplemented in some cases by ISO/CVF spectroscopy; detection of young stellar objects of diverse types,especially in the inner Bulge with information about the present and recent star formation rate; identification of foreground sources with mid-IR excess. These results are the subject of about 25 refereed papers published or in preparation.Comment: A&A in press. 19 pages,10 Ps figures; problems with figures fixe

    Transiting exoplanets from the CoRoT space mission. VIII. CoRoT-7b: the first super-Earth with measured radius

    Get PDF
    Copyright © The European Southern Observatory (ESO)Aims. We report the discovery of very shallow (ΔF/F ≈ 3.4×10−4), periodic dips in the light curve of an active V = 11.7 G9V star observed by the CoRoT satellite, which we interpret as caused by a transiting companion. We describe the 3-colour CoRoT data and complementary ground-based observations that support the planetary nature of the companion. Methods. We used CoRoT colours information, good angular resolution ground-based photometric observations in- and out- of transit, adaptive optics imaging, near-infrared spectroscopy, and preliminary results from radial velocity measurements, to test the diluted eclipsing binary scenarios. The parameters of the host star were derived from optical spectra, which were then combined with the CoRoT light curve to derive parameters of the companion. Results. We examined all conceivable cases of false positives carefully, and all the tests support the planetary hypothesis. Blends with separation >0.40'' or triple systems are almost excluded with a 8 × 10−4 risk left. We conclude that, inasmuch we have been exhaustive, we have discovered a planetary companion, named CoRoT-7b, for which we derive a period of 0.853 59 ± 3 × 10−5 day and a radius of Rp = 1.68 ± 0.09 REarth. Analysis of preliminary radial velocity data yields an upper limit of 21 MEarth for the companion mass, supporting the finding. Conclusions. CoRoT-7b is very likely the first Super-Earth with a measured radius. This object illustrates what will probably become a common situation with missions such as Kepler, namely the need to establish the planetary origin of transits in the absence of a firm radial velocity detection and mass measurement. The composition of CoRoT-7b remains loosely constrained without a precise mass. A very high surface temperature on its irradiated face, ≈1800–2600 K at the substellar point, and a very low one, ≈50 K, on its dark face assuming no atmosphere, have been derived

    Diffraction limited near-infrared imaging of the Red Rectangle by bispectral analysis

    No full text
    We present a new method for infrared speckle imaging mainly based on the bispectral analysis algorithm applied to extended objects. The efficiency of the reconstruction procedure is increased by a relaxation process making use of redundancies in the pupil plane. The method is applied to near- and mid-infrared data sets of the Red Rectangle (CRL 915) in K, L' and M-bands leading to diffraction limited maps of the post-AGB (Asymptotic Giant Branch) bipolar nebula. Studying the morphology of the Red Rectangle at sub-second of arc scale allows to decompose the near and mid-infrared broadband spectrum in two parts: the radiated light from the central part of the nebula and the radiated light from the lobes to the north and south. This decomposition indicates that, in addition to scattering of the light from a central source, thermal extended emission from warm dust may also be important at arsecond and subarcsecond scales in this bipolar nebula

    A preliminary database of DENIS point sources

    Get PDF
    This paper announces the release at CDS of a substantial set of point sources detected by the DENIS project. DENIS is the first astronomical survey of the Southern sky in two near-infrared bands (J at 1.25 m, and Ks at 2:15 m) and one optical band (Gunn-i at 0.82 m), conducted by a European consortium, using the 1m telescope at ESO, La Silla (Chile). The first data release, described here, consists of a preliminary set of about 17 million extracted point sources, corresponding to 102 strips (2% of the Southern sky), and resulting from observations performed in 1996. Data are available through a World-Wide Web server at the CDS (Strasbourg astronomical Data Center): http://cdsweb.u-strasbg.fr/denis.html.Peer reviewe

    Searching for very low-mass stars and brown dwarfs with DENIS

    No full text
    We present the results of infrared spectroscopic observations of a sample of very low-mass stars and brown dwarf candidates detected in a 230 square degree area by the DENIS (DEep Near Infrared Southern sky; Epchtein, 1997) survey. We find that objects as faint as the faintest known stars are easily detected by DENIS. This sample also includes three members of the new "L” dwarf class, one of which was the first confirmed isolated field brown dwarf. As this data represents ∌1%\sim 1\% of the total DENIS survey area, the completed survey can be expected to have a dramatic impact on the study of the faintest stars and brown dwarfs. In particular, it should detect ~300 of the new and poorly understood "L” class of dwarfs
    corecore